3.1959 \(\int \frac{1}{(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\)

Optimal. Leaf size=62 \[ -\frac{2 \left (a e^2+c d^2+2 c d e x\right )}{\left (c d^2-a e^2\right )^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \]

[Out]

(-2*(c*d^2 + a*e^2 + 2*c*d*e*x))/((c*d^2 - a*e^2)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0089736, antiderivative size = 62, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.034, Rules used = {613} \[ -\frac{2 \left (a e^2+c d^2+2 c d e x\right )}{\left (c d^2-a e^2\right )^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(-3/2),x]

[Out]

(-2*(c*d^2 + a*e^2 + 2*c*d*e*x))/((c*d^2 - a*e^2)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

Rule 613

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-3/2), x_Symbol] :> Simp[(-2*(b + 2*c*x))/((b^2 - 4*a*c)*Sqrt[a + b*x
 + c*x^2]), x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int \frac{1}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx &=-\frac{2 \left (c d^2+a e^2+2 c d e x\right )}{\left (c d^2-a e^2\right )^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0212348, size = 49, normalized size = 0.79 \[ -\frac{2 \left (a e^2+c d (d+2 e x)\right )}{\left (c d^2-a e^2\right )^2 \sqrt{(d+e x) (a e+c d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(-3/2),x]

[Out]

(-2*(a*e^2 + c*d*(d + 2*e*x)))/((c*d^2 - a*e^2)^2*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [A]  time = 0.043, size = 86, normalized size = 1.4 \begin{align*} -2\,{\frac{ \left ( cdx+ae \right ) \left ( ex+d \right ) \left ( 2\,cdex+a{e}^{2}+c{d}^{2} \right ) }{ \left ({a}^{2}{e}^{4}-2\,ac{d}^{2}{e}^{2}+{c}^{2}{d}^{4} \right ) \left ( cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade \right ) ^{3/2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x)

[Out]

-2*(c*d*x+a*e)*(e*x+d)*(2*c*d*e*x+a*e^2+c*d^2)/(a^2*e^4-2*a*c*d^2*e^2+c^2*d^4)/(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*
e)^(3/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 6.55686, size = 305, normalized size = 4.92 \begin{align*} -\frac{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, c d e x + c d^{2} + a e^{2}\right )}}{a c^{2} d^{5} e - 2 \, a^{2} c d^{3} e^{3} + a^{3} d e^{5} +{\left (c^{3} d^{5} e - 2 \, a c^{2} d^{3} e^{3} + a^{2} c d e^{5}\right )} x^{2} +{\left (c^{3} d^{6} - a c^{2} d^{4} e^{2} - a^{2} c d^{2} e^{4} + a^{3} e^{6}\right )} x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="fricas")

[Out]

-2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)/(a*c^2*d^5*e - 2*a^2*c*d^3*e^3 + a^
3*d*e^5 + (c^3*d^5*e - 2*a*c^2*d^3*e^3 + a^2*c*d*e^5)*x^2 + (c^3*d^6 - a*c^2*d^4*e^2 - a^2*c*d^2*e^4 + a^3*e^6
)*x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Integral((a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))**(-3/2), x)

________________________________________________________________________________________

Giac [A]  time = 1.24905, size = 134, normalized size = 2.16 \begin{align*} -\frac{2 \,{\left (\frac{2 \, c d x e}{c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}} + \frac{c d^{2} + a e^{2}}{c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}}\right )}}{\sqrt{c d x^{2} e + a d e +{\left (c d^{2} + a e^{2}\right )} x}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="giac")

[Out]

-2*(2*c*d*x*e/(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4) + (c*d^2 + a*e^2)/(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4))/sqrt(
c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)